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Abstract

A refined dynamic theory of rotating blades modeled as anisotropic composite thin-walled beams, experiencing the
flapping-lagging-transverse shear coupling is presented. The structural model encompasses a number of non-standard
features, such as anisotropy and transverse shear, pretwist and presetting angles, the presence of a rigid hub on which
the beam is mounted, and the rotatory inertia. The developed theory and the methodology used to determine the
eigenfrequency characteristics are validated against the results available in the literature, and new results emphasizing
the influence played by the ply-angle, pretwist and presetting, coupled with that of the rotating speed on blade free
vibration characteristics are supplied, and pertinent conclusions are outlined.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The accurate prediction of free vibration characteristics of turbine blades, tilt-rotor aircraft, helicopter
blades and aircraft propellers is of a considerable importance towards the reliable design of these structural
systems. A good knowledge of their free vibration characteristics is essential toward determination of their
dynamic response to external excitations, resonant behavior, flutter instability and of their fatigue life.

In order to be able to predict adequately the free vibration response of advanced rotating blades con-
structed of composite materials, comprehensive structural models that encompass a number of features
such as anisotropy and transverse shear warping restraint, and the pretwist and presetting angles should
be developed and used. Traditionally, this problem, considered in specialized contexts, was approached
within a solid isotropic beam model. In this sense, the reader is referred e.g. to the papers by Slyper
(1962), Carnegie and Thomas (1972), Subrahmanyam et al. (1981), and Banerjee (2001), where, problems of
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non-rotating beams have been addressed; to Kumar (1974), Putter and Manor (1978); Wang et al. (1926),
Hodges (1981), Hodges and Rutkowski (1981), Rosen et al. (1987), where issues on vibration of rotating
solid beams have been developed; and to the survey-paper by Rosen (1991) where ample references to the
literature addressing various related issues have been supplied. Within the concept of thin-walled beams
(TWBs), the treatment of the free vibration problem of rotating beams was carried out in various spe-
cialized contexts in a number of papers (see e.g. Rehfield et al., 1990; Chandra and Chopra, 1992; Song and
Librescu, 1997, 1999; Song et al., 2001a,b; Jung et al., 2001). The survey papers, by Jung et al. (1999),
Hodges (1990) and Kunz (1994) supply extensive references on the state-of-the-art of this problem.

However, in spite of the extensive work devoted to this problem, one should remark the absence of a
structural model of rotating TWBs encompassing the basic features of advanced filamentary composite
structural systems, such as directionality and transverse shear, as well as the pretwist and presetting effects.
Within this paper, the coupled flapping-lagging-transverse shear vibrations of a pretwisted rotating com-
posite TWB mounted on a rigid hub of radius R, at a setting angle y, and featuring the previously men-
tioned effects are investigated.

In this context, the effects of the ply-angle of the filamentary constituent materials and of transverse
shear, as well as that of the hub radius and angular velocity on coupled bending vibrations are addressed. In
addition, comparisons with a number of predictions obtained in special cases are presented, and excellent
agreements are reported.

2. Analysis
2.1. Preliminaries

The case of a straight pretwisted flexible beam of length L mounted on a rigid hub of radius Ry, rotating
at the constant angular velocity Q2 as shown in Fig. 1 is considered. The beam is allowed to vibrate flexurally
in a plane making an angle y, referred to as setting angle with the plane of rotation. The origin of the
rotating systems of coordinates (x,y,z) is located at the blade root, at an offset R, from the rotation axis.

Fig. 1. (a) Geometry of the pretwisted beam. (b) Cross-section of the beam with pretwist and presetting angles.
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Besides the rotating coordinates (x, y,z), we also define the local coordinates (x?,y?, z”), where x” and )” are
the principal axes of an arbitrary beam cross-section (see Song et al., 2001a,b).
The two coordinate systems are related by the following transformation formulae:

x =x"cos(y + f(z)) —y"sin(y + B(2)),
y=x"sin(y + B(2)) + " cos(y + f(2)), (la—c)

z=7z",

where f(z) = f,z/L denotes the pretwist angle of a current beam cross-section, f§, denoting the pretwist at
the beam tip.

In addition to the previously defined coordinate systems, the inertial reference system (X,Y,Z) is at-
tached to the center of the hub O. By (i,j,k) and (I, J,K) we define the unit vectors associated with the
rotating and inertial coordinates, (x,y,z) and (X, Y, Z), respectively. In addition, a local (surface) coordi-
nate systems (s, z, n) is considered. The geometric configuration and the typical cross-section, along with the
associated systems of coordinates are presented in Fig. 1.

Within the present work, the precone angle of the blade is assumed to be zero. It is further assumed that
the rotation takes place in the plane (X, Z) with the constant angular velocity Q(= QJ = Qj), the spin axis
being along the Y-axis.

The considered structural model corresponds to a single-cell TWB of uniform closed-section, where the
spanwise, z-coordinate axis coincides with a straight unspecified reference longitudinal axis.

2.2. Kinematics

The position vector of a point M(x, y,z) belonging to the deformed beam structure is expressed as:
R(x,y,z:0) = (x+w)i+ (y +0)j + (2 + w)k + Ry, (2)

where x, y and z are the Cartesian coordinates of the points of the 3-D continuum in its undeformed state,
while u, v and w denote displacement components. Recalling that the spin rate was assumed to be constant,
keeping in mind that the rotation takes place solely in the XZ plane, and making use of equations expressing
the time derivatives of unit vectors (i, j, k), one obtain the velocity and acceleration vectors of an arbitrary
point M of the beam under the form

R=Vi+Vj+Vk (3a)
and

R = ai+aj+ak (3b)
respectively. Their components are as follows:

Vi=u+Ro+z+w)Q; V=0 V.=w—(x+u)Q (4a—c)
and

a, =it + 2w — (x—l—u)Qz; a, =10, a.=w—2uQ— (Ry +z4+w)Q% (5a—)
In these equations and the following ones, the superposed dots denote time derivatives, and the terms
underscored by one or two superposed solid lines are associated with Coriolis and centrifugal inertia terms,

respectively. As concerns the components of the displacement vector, their expressions have been supplied
by Song and Librescu (1997) and Librescu et al. (1997), and are reproduced here for completion
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u(x, t,z;t) = uo(z; 1) — yp(z;1);  v(x,p,2;t) = vo(z;t) +x9(2; 1),

w(x,t,z;t) = wo(z; 1) + 0.(z; 1) {y(s) - n(;—;c} +0,(z;1) [x(s) + n%:| — @' (z;0)[F,(s) + na(s)].

(6a—c)

In these equations u(z;¢), vo(z;t), wo(z;¢) denote the rigid body translations along the x-, y- and z-axes,
while ¢(z;¢) and 0,(z;¢), 0,(z,¢) denote the twist about the z-axis and rotations about the x- and y-axes
respectively. The expressions of 0, and 0, are

O0u(z:0) = 7,(z:) — vy(z30); Oy(z38) = (z38) — (23 0). (7a,b)

In Egs. (6a—), F,(s) and na(s) play the role of primary and secondary warping functions, respectively. For
their definition, see e.g. Song and Librescu (1997) and Song et al. (2001a,b).
In the absence of transverse shear effects where, y,, and 7, denote transverse shear strains,

0.(z:0) = —th(z0); 0,(z1) = —uy(z0). (8a,b)

In these equations, as well as in the forthcoming ones, the primes denote differentiation with respect to the
longitudinal z-coordinate.

2.3. The equations of motion and boundary conditions

In order to derive the equations of motion and the associated boundary conditions, the extended
Hamilton’s principle is used. This can be stated as (see e.g. Librescu, 1975)

4
o = / [/ 0,;0¢;;dt — 0K — 8./ — / pH,-Bv,-dr} dt =0, 9)
to T T
where ;; and ¢; stand for the 3-D stress and strain tensors, respectively,

U:%/aijsijdr and K:%/p(R‘R)dr (10a,b)

denote the strain energy functional and the kinetic energy, respectively.

In these equations, £, and ¢, denote two arbitrary instants of time; dt(= drndsdz) denotes the differential
volume element, H; denote the components of the body forces; p denotes the mass density; an undertilde
sign identifies a prescribed quantity, while d denotes the variation operator. In Egs. (9) and (10) the Einstein
summation convention applies to repeated indices, where Latin indices range from 1 to 3. In the same
equations, (vy, vy, v3) = (u,v,w), and (x1,x2,x3) = (x,,2).

As necessary pre-requisites, the various energies that are involved in the variational principal have to be
rendered explicitly.

For this case, we have:

’I t] . . t] ..
/ aKdz:/ /(R-SR)drdt:—/ dt/pR-éRdr, (11)
) ) T 1 T

where Hamilton’s condition R = 0, for ¢t = ¢, #; is involved.
Upon substituting (3) and (6) into (11), and performing the integrations in the circumferential and
thickness directions, one obtains
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1 I3} L
/ dK dt = / { / — {1 (itg + 2wo R — upQ*)dug + by oSy + by iy — 2iQ — (Ro + z + wy) 2wy
1 1 0 —_— ———

0 0

+ (bs + Subis) (6, — 2°0,)80, + [(bs + S,b14) (6, — 2%0.) + 2b424]30;

+ [(ba + bs)p — 26426, — (by — bs) 2§ — (bio + 6,b15)(¢" — 2 ¢")|8¢} dz

— [(b1o + 3,b15) (9 — 92¢')]5¢]€}df- (12)
For the variation of the strain energy U one obtains

4 I3 L
/ / 0,506, drdt = / / {5y + (M — 0.)80, + (M. — 0,)80, + (B!, + M. + (T.¢/)' |5
1o T to 0 -

4
+ [0, + (Tup) 18ug + [Q, + (Tovp) 18vo } dzdt + / [T.8wy. + M,80, + M, 50,

— B3¢ + (B, + M. + T,¢")3¢ + (O, + Tuttg)u + (Q, + Tov})dto]  dr.
(13)

These equations are represented in terms of 1-D stress resultants (7., O, and Q,) and stress couples (M., M,,
M., T, and B,,). Their expressions have been supplied by Song and Librescu (1993), and will not be recorded
here.

Considering also the virtual work of external forces we have,

3
dof = / [peduy + p,dvg + p.dwy + m, 30, + m,d0, + (m. + m.))d¢|dz
0

L. (14)

+ |:Qx6u0 + QySUO + IZSWO + stex + MySHy + ]\jfz&ﬁ - §w6¢lj|
~ ~ 0

Using (12)—(14) in the Hamilton’s principle, invoking the stationarity of the functional in the time internal
[to, 1] and the fact that the variations (8uo, dvo, dwg, 80,, 80,, 8¢ and d¢') are independent and arbitrary,
their coefficients in the two integrand must vanish independently. This yields the equations of motion and
the boundary condition, that are not displayed here.

3. Governing system
3.1. The shearable system

In the present paper a special case of ply-angle distribution inducing special elastic couplings will be

considered. This consists of the lamination scheme

0(x) = 0(—=x), 0(y) = 0(—y), (15)
where 6 denotes the ply-angle orientation considered to be positive when is measured from the positive
s-axis towards the positive z-axis (see Fig. 1).

As it was previously shown, (see Atilgan and Rehfield, 1989; Smith and Chopra, 1991), this ply-angle
configuration, referred to as the circumferentially uniform stiffness configuration achievable via the usual
filament winding technology, results in an exact decoupling between flapping-lagging-transverse shear, on
one hand, and extension-torsional motion, on the other hand. In the present study only the former problem
involving the bending-bending coupling will be considered.
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The governing dynamical equations of pretwisted rotating blades expressed in terms of displacement
variables are expressed as:

61/{0 : >a42(2)0; + 6143(2)9; + 044(2)(116 + Hy) + a45(z)(vf) + Qx)_ — blﬁo + b]MoQZ
+ b 2REuy] +p. =0,

600 : a52(z)9; + a53(z)9; + a55(z)(v£) + Hx) + a54(z)(u6 + By) — blbo + b1Q2[R(Z)UH/ +py = 0,

80y : axn(2)0, + axs(z)(v) + 0:) + axn(z)(uy + 0,) + ax(2)0; | — asu(z)(uy + 0,) — ass(2)0,

— i)+ 0.) = anl2)d, — (bs(:) + 0,bis(2)) (6, - 2°0,) "

— (bs() — 3,b12(2)) (6 — 2°0,) +m, =0,

SHx : |:6133 (Z)H; + axs (Z)H//v + 6134(2) (u() + Hy) + ass (Z) (Z/l6 + Qx)i|/ — dss (Z) (UE) =+ Hx) — Llsz(Z)Q;
— asy(2) (uf + 0,) — as3(2)0, — (ba(z) + 8,b1a(2)) (0, — 2°0;)

~roro~

—@@%ﬁ@ﬁm@—¢@+m:0

Herein, py, p,, m, and m, are the external loads and moments that are assumed to be functions of both z and
t coordinates.

For the sake of identification, in the previous equations, the terms associated with the centrifugal ac-
celeration terms are underscored by two superposed solid lines (====); rotatory inertia terms by a dotted
line (---), and centrifugal-rotatory effect by a solid line superposed on a wavy line (m~=~).

Assuming the blade to be clamped at z = 0 and free at z = L, the homogeneous boundary conditions
result as:

Atz=0

uy=0, v=0 6,=0, 6,=0 (17)
and at z = L:

Suo : an(L)0, + as(L)0,. + as(L)(uy + })—I—a45L)UO+0) 0,

(
(18)
60y L a» L + ass L (UO —|— 0 a24(L)(u0 + 9 ) + a23( ) = 0,

(L8, (L) (

8 : as(L)0, + ass(L)0, + ass(L)(vy + 0,) + asa(L) (u + 0,) = 0,
(L8, (L) ) L)o, =

80, : as3(L)0. + asa(L)(uy + 0,) + ass(L) (v + 6,) + an(L )0 =0.

+
+
As is clearly seen, these equations can address either the dynamic response of rotating blades exposed to
time-dependent external excitation, or the free vibration problem. In the latter case, the external loads

should be discarded.
In Eq. (16) and the following ones

R(z) = [Ro(L — z) + }(L* - )], (19)

whereas the coefficients a;;(z) = a;;(z) and b;(z) denote stiffness and reduced mass terms, respectively. Their
expressions are displayed in Tables 1 and 2, respectively.
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Table 1
Expressions of stiffness quantities (a;;(z) = a;i(z)), in terms of their cross-sectional principal axes x” and )” counterparts, af,(= a%),
pretwist and presetting angles

a;(z) Their expression

an oy €08 (7 + f(2)) + diysin’ (7 + B(z)) — 25y sin(y + B(z)) cos(y + B(2))

as3 dhy O8> (7 + B(2)) + @by sin’ (y + f(z)) + 2ab sin(y + B(z)) cos(y + B(z))

day dyy 08 (7 + B(z)) + dbs sin’ (7 + B(z)) — 2d4ssin(y + B(z)) cos(y + B(z))

ass dss co8” (7 + f(z)) + diy sin’ (7 + B(z)) + 2d5, sin(y + f(z)) cos(y + B(z))

a (a5, — db3) sin(y + B(z)) cos(y + B(z))

(g = —a3s —(abs + d%) sin(y + B(2)) COS( +B(2))

ass dhs cos’(y + B(2)) — dyy sin ( B(2)) + (a5 — dis) cos(y + B(z)) sin(y + B(z))
ax sy 08 () + f(z)) — dis sin® (7 + B(z)) + 5y — i) cos(y + B(2)) sin(y + (2))
das (dhy — dfs) cos(y + B(z)) sin(y + B(2))

Table 2
The reduced mass terms b;(z) in terms of their counterparts in the cross-sectional principal axes 57
bi(z) Their expression
bl b]])
by B, cos*(y + B(2)) + B sin’ (7 + B(2)) + 268 sin(y + B(2)) cos(y + B(2))
bs B cos*( -+ B(z)) + B, sin’(y + B(2)) — 26 sin(y + B(2)) cos(; + B(2))
be (01 — ) oty + BE) sinly + Je) + Hleos’y-+ HE)) = si’(y + o)
bi (B, — s) cos(y + B()) sin(y + B(2))
bis By cos’ (1 + B(2)) + Vs sin (7 + ) — 26, siny + &) cos(y + B(2))
bis bis cos(y + B(2)) + by sin’ (7 + (z)) + 2b7, sin(y + f(z)) cos(y + f(z))

The quantities affected by superscript p, indicate their affiliation to the beam cross-sections referred to the principal axes (x?,”). These
quantities can be found in the paper by Song and Librescu (1993).

3.2. Non-shearable counterpart of the previously obtained system

Extracting from Egs. (16); and (16)s, the expressions ass(uj + 0,) + ass(vy + 0,) and ass(vy + 0,) +
ass(ug + 0,), respectively, and their corresponding replacement in Egs. (16)1, (16),, (18);, and (18), followed
by consideration of 8, — —v; and 0, = —u, yields the Bernoulli-Euler counterpart of the shearable beam
model.

As a result, the governing equations read as:

g [an(2udy + axs (2)0f)" — [(bs(2) + Bubus(2)) ity — @) + (Be(z) — ,b13(2)) (5 — @vp))

+ byilg — b1Q%ug — b’ [R(2)uy) — p — ml, =0,

61)0 : [a33(z)vg + a32(2)ug],, — [(b4(Z) + 5,,[714(2))(1)6 — 9206) + (bg(Z) — 5,,b13(Z))(12£) — 92146)]'

A~~~ o~

The associated homogeneous boundary conditions are:
Atz=0:
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and atz = L:
Sug + [axn(L)ug + axs(L)vg] — (bs(L) + 0,b15(L)) (il — Qup)

— (bo(L) = 6,b15(1) (5 — @ty) — my(L,1) =0,

dvy : [ass(L)vy + a32(L)”g], — (ba(L) + 5nb14(L))(% - ?jflg) (22)

= (bs(L) — dub13(L)) ity — Quy) — my(L,1) =0,

dutgy : an(L)uy + ar(L)vy = 0,
Sy : ass(L)vy + as(L)ug = 0.
The expressions of stiffness a,;(z) and reduced mass terms b;(z) are supplied in Tables 1 and 2.

4. Several comments on the governing system

In connection with the governing equations of pretwisted rotating beams several comments are in order.

First of all, it should be reminded that in the context of the implemented ply-angle configuration, the
governing system, Eqs. (16)—(18), involve the flapping-lagging-transverse shear elastic couplings.

However, in the presence of the pretwist and presetting a supplementary coupling between the flapping-
lagging-transverse shear motions is experienced. In this case, as emerging from Tables 1 and 2, the stiffness
quantities and reduced mass terms become a function of the spanwise coordinate. It also becomes evident
that for the non-pretwisted beams featuring also zero presetting, the stiffness quantities a3(z), a2(z), a35(z)
and ays(z), and the mass term bg(z) (when also the rotatory inertia effect is discarded), as well as b;;3(z)
become zero valued quantities, and, as a result, a number of couplings become immaterial.

Moreover, for non-pretwisted beams, the stiffness and mass terms cease to experience the spanwise
dependence. It also clearly emerges that for doubly symmetric beams of a square cross-section, the stiff-
nesses ax(z), axu(z), ass(z) and ags(z), as well as the mass terms bg(z) and bi3(z) become zero valued
quantities for any value of the pretwist and presetting angles.

Most similar comments related to the stiffness a»;(z)(= a3(z)) and mass terms bg(z) and by3(z) are ap-
plicable to the classical beam counterpart, as well.

We should however remark that for doubly symmetrical beam cross-sections, implying a5, = al;; by = b%
and b}, = b5, and in the absence of rotatory inertia (implying &¢ = 0), the two classical bending equations
and the associated boundary conditions exactly decouple into two independent groups, each of these
governing, for any pretwist or presetting angle, the out-of-plane and the in-plane bending. Consequently, in
this special case, it results that

Ay = a3z = S; b4(Z) = b5(2) and b15(Z) = b14(2). (233)
From the system of governing equations (20)—(22), specialized to the case of zero pretwist, one can express
uy and vy as

uo(z,1); vo(z, )] = W (2)[sinp, cosy] exp(iwt), [i=V—1], (23b)

where W (z) is the deflection in the plane defined by the setting angle y.

Expressing in (20)—(22) u and v through W, one can recast the dynamic equations governing the bending
of a Bernoulli-Euler rotating beam featuring doubly symmetry, in a plane at angle y with the plane of
rotation as:

[SW")" + {[bs + S,b15](* + QYWY — by QP[R(Z)W') — by’ W =0, (24a)
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where

) =’ + Qsin’y (24b)
and the boundary conditions:

W=Ww=0 atz=0 (25)
and

[SW") 4 [bs + 8,bys)(0* + Q)W =0, SW" =0, atz=L. (26)

These equations specialized for the case of the absence of rotatory inertia, reduce to those supplied by
Hodges (1981).

It should be noticed that for y = /2 and 0, Eqs. (24)-(26) reduce to the rotating beam counterpart
experiencing the motion in lagging and flapping, respectively.

From Eq. (24b) one can see that the flapping frequency is w} = @2, while the vibration frequencies at
any y expressed in terms of that at y = 0 can be expressed as

o’ = @* — Psin’y. (27)

This expression reveals that the frequencies at any setting angle are lower than those corresponding to the
purely flapping motion counterpart.

Applying the Rayleigh-quotient procedure to the governing Eq. (24) considered in conjunction with the
boundary conditions and Eq. (19), the natural frequency at any setting angle results as

ﬂ%wm+m NNNNNNNN

w* = ) (28)

where W = W(z) should fulfil boundary conditions, Egs. (25) and (26).

From this equation one can easily conclude that rotatory inertia yield a diminution of fundamental
frequency, whereas the increase of the rotor hub radius results in frequency increase. As concerns the
setting angle, its increase yields a decrease of the fundamental frequency. These conclusions are in excellent
agreement with those outlined by Lo and Renbarger (1952). The results also reveal that for the non-rotating
blade, the effects of the hub radius and presetting angle on eigenfrequency are immaterial.

5. Solution procedure

Due to the intricacy of the eigenvalue problem, and of the complex character of dynamic boundary
conditions, an approximate solution procedure should be applied. To this end, uy, vy, 0x and 0, are rep-
resented by means of series of space-dependent trial functions that should fulfil the boundary conditions,
multiplied by time-dependent generalized coordinates.

For the problem at hand the displacement measures are represented as

(uo(z,1),v0(z, 1), 0:(2,1),0,(z,1)) = (V(2),V(2),S(2), P(z)) exp(iwt) (29)
where w is the eigenfrequency, while the spatial parts are expressed as

n

(U(Z)> V(Z)7S<Z)7P(Z)) = Z(ajuj(z)a ij«/'(z)’ C‘,-SJ-(Z), djpj(z)) (30)

j=1
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In Eq. (30), u;(z),v;(z),s;(z) and p;(z) are the trial functions that should fulfil all the boundary conditions.
However, trial functions satisfying also the dynamic boundary conditions, can hardly be generated.

In the spirit of the Extended Galerkin Method (see e.g. Librescu et al. (1997)), only admissible functions,
(i.e. trial functions fulfilling only the geometrical boundary conditions), are used. As a result, the trial
functions are expressed as polynomials of various power in the z variable which exactly fulfil the boundary
conditions at z = 0.

To be consistent with the EGM, representations (29) in conjunction with (30) are inserted
in the Hamilton’s principle. Because from the boundary conditions only the dynamic boundary conditions
are not fulfilled, these remain in the functional as residual terms that, together with the one resulting from
the equations of motion, are minimized in the Galerkin’ sense. (see e.g. Librescu et al. (1997)).

As it was previously revealed in different contexts (see e.g. Librescu et al. (1997) and Qin and Librescu
(2002)), the application of this method results in an excellent accuracy and rapid convergence. For the
problem at hand, the eigenvalue problem results in the standard form Ax = w?x, where A = M'K, M and
K being the mass and stiffness 4n x 4n matrices,

T _
X = [al,az,...,a,,,bl,bz,...,b,,,cl,cz,...,c,,,dl,dz,...,d,,]

is a constant vector, while w is the eigenfrequency.

6. Comparisons with available numerical predictions

For the case of the nonrotating thin-walled beams, extensive validations of the statics and dynamics of
composite single-cell box beams have been accomplished and reported in the papers by Qin and Librescu
(2001, 2002). The validations have revealed that the present thin-walled beam model provides results is
excellent agreement with those based on various structural models. Among these, for static validation, there
are the ones developed by Hodges and his collaborators (see e.g. Volovoi et al. (2001), as well as the ones
supplied by Smith and Chopra (1991) and Rehfield et al. (1990).

For dynamic validation, the results obtained within the present model and compared with the ones by
Chandra and Chopra (1992), reveal also excellent agreements. Moreover, very good agreements between
the static (Smith and Chopra (1991)) and dynamic (Chandra and Chopra (1992) and their counterparts
based on the present structural model, have been reported by Qin and Librescu (2001, 2002)).

The equations derived for the case of rotating TWB are similar to the ones corresponding to a solid beam
model. The difference occurs only in the proper expression of cross-sectional stiffness quantities and mass
terms. For this reason, use of dimensionless parameters in which these quantities are absorbed, enables one
to obtain universal results, valid for both solid and TWBs. In order to validate both the solution meth-
odology and the structural model developed in this paper, comparisons with a number of results available
in the literature are presented.

In Tables 3-5, within the assumptions considered in Section 4 above, comparisons with a number of
previously obtained results are displayed.

In this sense, in Table 3, the effect of the setting angle and of selected rotational speeds on the first four
natural frequencies of shearable beams, is compared to that obtained in the papers by Wang et al. (1976),
Yokoyama (1988), and Lee and Lin (1996), where various methods have been applied.

In these numerical simulations the following dimensionless parameters of the rotational speed, natural
frequency, and hub radius have been used and are listed in the same sequence:

(QZ’ 652) = (Qz7w2)(b1L4/a33); Ro = R()/L (31)

The results reveal the excellent agreement, especially with the predictions by Yokoyama (1988) obtained via
FEM.
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Table 3
Comparison of coupled flapping-lagging frequencies w; (Hz) of a pretwisted beam (f, = 45 deg., y =0, 2 =0, Ry = 0)

; Subrahmanyam et al. (1981) Dawson (1968) Rao (1977)  Carnegie (1959) Present (ex- Error w.r.t.
Reissner Potential en- (Rayleigh-Ritz  (Galerkin (experiment) tended Galer- experiment(%o)
method ergy method process) process) kin method)

i=1 61.9 62.0 62.0 61.9 59.0 62.0 5.25

i=2 304.7 305.1 301.0 305.0 290.0 305.1 5.21

i=3 937.0 955.1 953.0 949.0 920.0 949.0 3.15

i=4 1205.1 1214.7 1230.0 1220.0 1110.0 1206.1 8.66

The characteristics of the beam as involved in the considered table are: ab,(= El,) =487.9 Nm?% (= EL,) =226 Nm?,

dy, = dl(= kGA) = 3.076 x 10° Nm?, b)(=pdy) =0.3447 kg/m; b, = (pl,) =8.57 x 1078 kgm, b:= (pl,)=0.000019 kgm,
By =B =0, L =1524 x 10 m.

Table 4
Effect of setting angle on natural frequency parameter @; of rotating cantilever shearable beams (2 = 10 and R, = 3)
@; n=0.1, u = 0.030588 n = 0.025, u = 0.007647
y =0 deg. y =45 deg. y =90 deg. y =0 deg. y =45 deg. 7 =90 deg.

i=1 Present 23.0362 21.973 20.853 23.510 22.431 21.298
a 23.050 21.987 20.867 23.524 22.446 21.313
b 23.037 21.974 20.850 23.514 22.436 21.302
¢ 22.938 21.873 20.753 23.491 22.411 21.277

i=2 Present 45.429 45.195 44.957 56.062 55.653 55.240
a 45.598 45.359 45.115 56.105 55.696 55.284
b 45.428 45.194 44.955 56.072 55.662 55.250
¢ 44.781 44.550 44315 55.984 55.575 55.162

i=3 Present 66.866 66.775 66.681 97.002 96.782 96.562
a 67.716 67.619 67.520 97.188 96.968 96.747
b 66.854 66.793 66.668 97.011 96.792 96.570
¢ 66.287 66.200 66.109 96.913 96.693 96.473

i=4 Present 72.315 72.148 71.985 144.194 144.052 143.911
a 73.076 72914 72.756 144.490 144.349 144.208
b 72.313 72.146 71.982 143.815 143.673 143.531
¢ 71.967 71.792 71.620 143.71 143.57 143.43

0= (by + 0,b14)/(B1L7), u = azn/(Lass).
#Wang et al. (1976).
®Yokoyama (1988).
“Lee and Lin (1996).

The trend of variation of natural bending frequencies with the setting angle is consistent with that
emerging from Eq. (28), in the sense that the increase of y yields a decrease of bending natural frequencies,
this being valid for any mode number.

In Tables 4 and 5, within the assumptions displayed in Section 4, and for zero pretwisted rotating beams,
there are displayed comparisons of flapping (y = 0) and lagging (y = 90 deg.) frequencies, respectively with
some available results from the literature.

For y = 0 and 90 deg., the results are compared with those supplied by Hodges and Rutkowski (1981),
and Yokoyama (1988) and Putter and Manor (1978), respectively, and excellent agreements are remarked.

In Tables 6 and 7 comparisons of frequency predictions obtained for non-rotating/rotating unshearable
blades including effects of pretwist and presetting angles are supplied. The analyzed beam is characterized
by (see Rosen et al., 1987):
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Table 5
Natural frequency parameter @; of rotating unshearable cantilever beam (y = 0, f, = 0)
Q d)] 652 6)3
R=0 Ry=1 Ry=0 Ry=1 Ry=0 Ry=1
Hodges Present Hodges Present Hodges Present Hodges Present Hodges Present Hodges Present
and and and and and and
Rut- Rut- Rut- Rut- Rut- Rut-
kowski kowski kowski kowski kowski kowski
(1981) (1981) (1981) (1981) (1981) (1981)
0 3.51602  3.51602 3.51602 3.51602 22.0345 22.0344 22.0345 22.0344 61.6972 61.7150 61.6972 61.7150
1 3.68165 3.68164 3.88882 3.88882 22.1810 22.1810 22.3750 22.3750 61.8418 61.8593 62.0431 62.0607
2 413732 4.13732  4.83369 4.83367 22.6149 22.6149 23.3660 23.3661 62.2732 62.6149 63.0676 63.0644
3 4.79728  4.79727 6.08175 6.08173 23.3203 23.3203 24.9278 24.9278 62.9850 63.0013 64.7338  64.7493
4 5.58500  5.58500 7.47505 7.47505 24.2734 242734 26.9573 26.9573 63.9668 63.9820 66.9868  67.0006
5 6.44955  6.44953 8.94036 8.94042 25.4461 254461 29.3528 29.3528 65.2050 65.2189  69.7607  69.7725
6 7.36037  7.36038 10.4439 10.4438 26.8091 26.8091 32.0272 32.0273 66.6839  66.6963  72.9863  72.9960
7 8.29964  8.29960 11.9691 11.9690 28.3341 28.3341 349116 349117 68.3860 68.3968 76.5965 76.6039
8 9.25684  9.25683 13.5074 13.5077 29.9954 29.9954 37.9538 37.9539 70.2930 70.3022 80.5295 80.5352
9 10.2257  10.2257 15.0541 15.0542 31.7705 31.7705 41.1154 41.1161 72.3867 72.3944 84.7315 84.7352
10 11.2023  11.2025 16.6064 16.6062 33.6404 33.6403 44.3682 44.3698 74.6493 74.6556 89.1563 89.1583
11 12.1843  12.1843 18.1626 18.1628 35.5890 35.5890 47.6916 47.6941 77.0638 77.0687 93.7654 93.7667
12 13.1702  13.1702 19.7215 19.7223 37.6031 37.6033 51.0701 51.0741 79.6145 79.6181 98.5268 98.5277
Table 6
Natural frequency parameter @; of rotating unshearable cantilever beams (y = 90 deg., , = 0)
Q o @
R():O R():l RUIO R(]:l
Yoko-  Putter  Present Yoko-  Putter  Present Yoko-  Putter  Present Yoko-  Putter  Present
yama and yama and yama and yama and
(1988) Manor (1988) Manor (1988) Manor (1988) Manor
(1978) (1978) (1978) (1978)
0 3516 - 3.51602 3.516 - 3.51602 22.036 - 22.0344 22.036 - 22.0344
2 3.622 3.6118  3.62179 4.401 44005  4.40054 22.528  22.5263 22.5263 23.282  23.2803 23.2802
5 4.074 4.0739  4.07390 7.412 74115 741130 24952 249500 24.9500 28.926  28.9238 28.9240
10 5.050 5.0490  5.04889 13.261 13.2580 13.2576  32.123 321197 32.1198 43.237  43.2267 43.2282
20 6.794 6.7757  6.77927 25.318 252881 252992  51.372  51.3531 51.3573 76.659  76.5942 76.6353
50 10.899  10.4806 10.7630 61.881  61.6408 61.8446 116.417 116.1996 116.359 182.386 181.9361 182.316

az = 2869.7 Nm>;

azs = 57,393 Nm?;

by = 34.47 kg/m, and L = 3.048 m.

The results obtained within the present model and solution methodology (based on the extended Galerkin
method—see e.g. Librescu et al. (1997)), displayed in Tables 7 and 8 reveal a very good agreement with the
available exact and approximate predictions by Rosen et al. (1987) and Banerjee (2001). Moreover, Table 8,
reveals that for blades featuring a;, # as3, and in contrast to the case considered in Table 3, for which
axn = ax, by = bs, the increase of the setting angle yields, depending on the odd or even mode number,
either a decrease or increase of natural frequencies, respectively. At the same time, from Table 7, in the
same conditions characterizing the blade, the increase of the pretwist angle exerts an opposite effect to that
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Table 7
Effects of the pretwist angle on natural frequencies ; (rad/s) of a non-rotating unshearable blade (y = 0, Ry = 0)
w; Untwisted blade (f, = 0) Pretwisted blade (8, = 40 deg.)
Exact Rosen et al. (1987) Rosen et al. (1987)  Present Rosen et al. (1987)  Banerjee (2001)  Present
i=1 3.45305 3.44898 3.45317 3.47257 3.47173 3.47182
i=2 15.4425 15.4184 15.4429 13.2740 13.3465 13.3413
i=3 21.6399 21.5542 21.6406 25.2700 25.1707 25.1677
i=4 60.5924 60.984 60.6120 56.3009 56.3716 56.3485
i=5 96.7764 96.3913 96.7791 103.200 103.263 103.4122
Table 8
Influence of presetting angle on natural frequencies w; (rad/s) of a rotating unshearable blade with zero pretwist (f = 0, @ = 300 rpm)
o, 7 =0 deg. y =22.5 deg.
Rosen et al. (1987) Present Rosen et al. (1987) Present
i=1 19.711 19.7183 18.536 18.0769
i=2 32.488 32.4997 33.168 33.4381
i=3 81.585 81.7388 80.620 80.7609
i=4 121.33 121.531 121.97 122.183
i=5 141.62 142.132 141.11 141.618

experienced by the increase of the setting angle. In this sense, as it clearly appears, the increase of the
pretwist angle is accompanied, depending on the mode number, i.e. odd or even, by an increase or decrease
of the natural frequency, respectively.

7. Numerical simulations and discussion

Although the obtained equations are valid for a beam of arbitrary closed cross-section, for the sake of
illustration the case of a rotating beam modelled as a composite box beam (see Fig. 1) characterized by a
cross-section ratio (= ¢/b) = 5 was considered. In addition, unless otherwise specified, its dimensions are:
L =80 in. (2.023 m); ¢ = 10 in. (0.254 m); b =2 in. (50.8 x 1073 m); 2 = 0.4 in. (10.16 x 10~ m). The
mechanical characteristics of the beam as considered in the numerical simulations correspond to the
graphite/epoxy material. In the on-axis configuration these are given by

E;, =30 x 10 psi (20.68 x 10" N/m?), E; = 0.75 x 10° psi (5.17 x 10° N/m?)
Gur = 0.37 x 10° psi (2.55 x 10° N/m?), Gz = 0.45 x 10° psi (3.10 x 10° N/m?)
trr = =025 p=143x 107 Ibs/in*(1528.15 kg/m?)

where subscripts L and T denote directions parallel and transverse to the fiber, respectively.
Figs. 2 and 3 display the variation of the first two natural frequencies of the rotating beam (2 = 100) rad/s,
as a function of the ply-angle, for selected values of the setting angle, and for the pretwist, §, = 90 deg.
The results reveal a continuous increase of natural frequencies that accompanies the increase of the ply-
angle, Moreover, consistent with the results displayed in Table 7, depending on the odd or even mode
number, the increase of the presetting angle yields either a decrease or increase of natural frequencies.



1216 S.-Y. Oh et al. | International Journal of Solids and Structures 40 (2003) 1203—1224

300 [—— T ————

250 |

200

o, (rad/s)

150

100

50- L | I 1 1 1 1 1 L 1

6 (deg)

Fig. 2. Variation of the first coupled flapping-lagging natural frequency vs. ply-angle for different setting angles (5, = 90 deg., 2 = 100
rad/s, Ry = 0.1).
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Fig. 3. Variation of the second coupled flapping-lagging natural frequency vs. ply-angle for different setting angles. (f, = 90 deg.,
Q =100 rad/s, Ry = 0.1).

Related to these results, one should remark from Figs. 4 and 5 that the increase of the rotational speed
yields an increase of natural frequencies as compared to those displayed in Figs. 2 and 3, where a lower
angular speed was considered. Moreover, at larger angular speeds, the effect of the ply-angle is more
individualized for each of the considered setting angles than in the case of lower angular speeds.

In Figs. 6-8, there is displayed in succession the variation of the first three natural frequencies, as a
function of the setting angle, for selected values of the rotational speed. As it clearly appears also from these
figures, the effect of the setting angle on eigenfrequency of non-rotating beam is immaterial.

On the other hand, the trend of variation of various mode frequencies as a function of the presetting
angle and angular velocity remains similar to that previously emphasized. In these numerical simulations
the considered pretwist angle was 3, = 30 deg.
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Fig. 6. First coupled flapping-lagging natural frequency vs. presetting angle for selected rotational speeds (6 = 0, 8, = 30, Ry = 0.1).
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Fig. 7. Second coupled frequency vs. presetting angle for selected rotational speeds (0 = 0, 8, = 30 deg., Ry = 0.1).
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Fig. 8. Third coupled flapping-lagging natural frequency vs. presetting angle for selected rotational speeds (0 =0, f, = 30 deg.,
Ry =0.1).

In Figs. 9 and 10, for selected values of the setting angle it is displayed in succession the variation of the
first two natural frequencies, as a function of the pretwist angle. For zero presetting angle, the trend of
variation of natural frequencies with that of the pretwist angle, coincides with that reported e.g. in the paper
by Song et al. (2001a,b). As concerns the frequency variation with that of the setting angle, this is consistent
with the trend already indicated in the paper and with that supplied in Table 7.

In Figs. 11 and 12 there are displayed the implications of the hub radius, coupled with that of the ro-
tating speed on the fundamental coupled flapping-lagging natural frequency, for the beam featuring, the
setting angles y = 0 and 90 deg., and for the ply-angles, in succession, = 0 and 45 deg., respectively. Due
to the fact that in both cases, as considered in Figs. 11 and 12, the pretwist is §, = 90 deg., the flapping-
lagging coupling is present also in the cases involving y =0 and 6 = 0.

The results reveal that the differences between the frequencies corresponding to y = 0 and 90 deg. tend to
decay with the increase of the hub radius. This trend is consistent with that reported in the paper by Kumar
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Fig. 9. Variation of the first coupled flapping-lagging natural frequency vs. pretwist angle for different setting angles of the rotating
beam (0 = 45 deg., Q = 100 rad/s, Ry = 0.1).
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Fig. 10. Variation of the second coupled natural frequency vs. pretwist angle for different setting angles of the rotating beam (6 = 45
deg., Q = 100 rad/s, Ry = 0.1).

(1974). At the same time, the results associated to the same R, reveal that the increase of the ply-angle tends
to exacerbate the difference between the frequencies corresponding to y = 0 and 90 deg.

Figs. 13-15 further emphasize the considerable role that the tailoring technique can play toward the
increase, without weight penalties, of the coupled flapping-lagging natural frequencies of rotating beams.
Such a role that renders the composite material systems overwhelmingly superior to the metallic structures,
deserves well to be highlighted again in these graphs.

In addition, these plots reveal a number of trends related to the implications of the setting angle on each
mode frequency, trends that have already been outlined in the previously displayed numerical simulations.

Finally, in Figs. 16 and 17, the first lagging and first flapping normalized mode shapes, respectively, for
selected values of the setting angle or of the rotating speed, are supplied. From these plots, it clearly appears
that, the flapping mode is much stronger affected by the setting angle/rotating speed, than the lagging mode.
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Fig. 11. Variation of the first coupled flapping-lagging natural frequency vs. the rotational speed for different hub radii and two setting
angles (S, =90 deg., 6 = 0).
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Fig. 13. First coupled flapping-lagging for selected ply-angles (8 = 0, = 100 rad/s, Ry = 0.1).
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Fig. 14. Second coupled flapping-lagging natural frequency vs. presetting angle for selected ply-angles (8 = 0, Q = 100 rad/s, Ry = 0.1).
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Fig. 15. Third coupled flapping-lagging natural frequency vs. presetting angle for selected ply-angles (8 = 0, Q = 100 rad/s, Ry = 0.1).

8. Conclusions

A dynamic structural model of rotating TWBs encompassing a number of non-classical effects was
presented. The developed structural beam model accounts for the effects of the directionality of the fibrous
composite materials, and of the elastic couplings induced thereof, transverse shear, rotatory inertias, and of
the hub radius. In addition, the effects played by the pretwist and presetting angles, coupled with the
previously mentioned ones have been incorporated and their implications on free vibration have been
revealed.

Comparisons of eigenfrequency predictions based on the developed model and the extended Galerkin
solution methodology used in this paper with some available theoretical and experimental ones for rotating
and non-rotating beams have been carried out, and excellent agreements have been reached.

It is hoped that the results reported here will be helpful toward a better understanding of the implications
of a number of non-classical effects on natural frequencies of advanced rotating beams, and toward the
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Fig. 17. (a) Counterpart of Fig. 16a for the first flapping mode shape in coupled flapping-lagging motion. (b) Counterpart of Fig. 16b
for the first flapping mode shape in coupled flapping-lagging motion.

validation of the finite element and of other approximate methods that are used in the context of the
dynamics of rotating beams.
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